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The results of recent work of Kipnis, Olla, and Varadhan on the dynamic large 
deviations from a hydrodynamic limit for some interacting particle models are 
formally extended to a general hydrodynamic situation, including non- 
equilibrium steady states, as a fluctuation-dissipation hypothesis. The basic 
conjecture is that the exponent of decay in the probability of a large ther- 
modynamic fluctuation is given by the dissipation of the force required to 
produce the fluctuation. It is shown that this hypothesis leads to a nonlinear 
version of Onsager-Machlup fluctuation theory that had previously been 
proposed by Graham. A direct consequence of the theory is a dynamic varia- 
tional principle for the most probable thermodynamic history subject to 
imposed constraints (Onsager's principle of least dissipation). Following 
Graham, the theory leads also to a generalized potential, analogous to an equi- 
librium free energy, for the nonequilibrium steady state and an associated 
static variational principle. Finally, a formulation of nonlinear fluctuating 
hydrodynamics is proposed in which the noise enters multiplicatively so as to 
reproduce the conjectured large-deviations theory on a formal analogy with the 
results of Freidlin and Wentzell for finite-dimensional systems. 

KEY WORDS: Fluctuations; thermodynamics; fluctuation-dissipation rela- 
tion; nonlinear hydrodynamics; large deviations; generalized thermodynamic 
potentials. 

1. I N T R O D U C T I O N  

T h e  f a m o u s  f o r m u l a  of  B o l t z m a n n ,  S = kB log  W, def ined  the  m a c r o s c o p i c  

e n t r o p y  of  the  s econd  law in t e rms  of  m i c r o s c o p i c  probabi l i t ies /1~ I t  was  

E ins te in  in 1907 (z3) w h o  had  the  i ngen ious  idea  to inve r t  this r e l a t ion  to 

a l low the  Calcu la t ion  of  m i c r o s c o p i c  p robab i l i t i e s  f r o m  t h e r m o d y n a m i c s :  

S 
W ~ exp  k--B (1) 
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The latter "Einstein fluctuation formula" is now the basis of the standard 
theory for static equilibrium fluctuations. (4-6) 

Inspired by this formula, Onsager and Machlup in 1953 gave a very 
suggestive reformulation of linear fluctuation theory about equilibrium. (7) 
The starting point of their work was a linear Langevin equation for the 
thermodynamic fluctuation variables c~ = (~  ..... ~n) which was presumed to 
be obtained from microscopic theory by virtue of a kind of central limit 
theorem. From this they obtained a formula for multitime probability 
density functions of the fluctuation variables in the form 

fp \(0~(1)'"" o~(P)~ O C l l . . . t p  / exp [ -min f+~dt t ( ( z ,~)]  (2) 

where "rain" denotes minimization subject to the constraints :~(tl)= 
~(1)  ..... O~(tp) = ~(P), and L(& c~) is a "Lagrangian" given by 

L(a, ~) = 2T~ ~(a' a)+ ~'(x, x ) - %  s(~) (3) 

We explain briefly the notation. S is the entropy, which, written in terms 
of the fluctuations variables ~, is assumed to be given as a quadratic form: 

S= So-~  ~ sijTi7 j (4) 
t) 

X is the thermodynamic force defined as a function of c~ by 

0S x,=~ (5) 

The functions q5 and 5 u are also positive-definite quadratic forms (dissipa- 
tion functions) given by 

and 

1 ~ R,j~,0ij (6) �9 (a, a) = ~ 

tj 

where L o. are the Onsager coefficients in the linear phenomenological laws: 

a, = S L~Xj (S) 
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and R~ = (L-1)o. Onsager and Machlup assessed their own achievement as 
follows: "The theorem which has been proved is seen to be analogous to 
the Boltzmann principle. The latter tells the probability of a state in terms 
of its entropy; this theorem tells the probability of a temporal succession of 
states in terms of the entropy and dissipation function." The Onsager- 
Machlup result (2), in fact, is shown without difficulty to lead to 

1 Sij~i~j] f l  ( ; )  oc exp [ -  2-~B ~ (9) 

i.e., to give the Einstein fluctuation formula (in quadratic approximation.) 
What is more, the formula provides a dynamic variational principle (prin- 
ciple of least dissipation) for the most probable histories, which generalizes 
the familiar equilibrium variational principles (principle of maximum 
entropy, etc.) for the most probable states. The extension of the approach 
to other situations where a linear fluctuation theory applies, such as the 
steady state of open systems, (s) is, as observed already by Onsager and 
Machlup, straightforward. 

However, the extension of the Onsager-Machlup approach to the case 
of large (or nonlinear) fluctuations has not been so obvious or universally 
agreed upon. A noteworthy proposal for such a theory in a general 
hydrodynamic context was made by Graham at the XVIIth International 
Solvay Conference in Physics in 1978 (see ref. 9 and references therein.) 
Graham's starting point was an essentially phenomenological one, based 
on nonlinear fluctuating hydrodynamics. That is, white noise fluctuating 
currents were directly incorporated into the full nonlinear hydrodynamic 
equations. The microscopic basis for these equations is not as obvious as 
for the linear version, which presumably rests upon a central limit theorem, 
and the equations have been subject to criticism on several grounds. (1~ 
Nevertheless, invoking certain asymptotic methods of evaluation, Graham 
argued for his results. Although his conclusions were certainly attractive, 
the method of argument could not be considered compelling. 

Recently, a remarkable theorem has been proved which sheds light 
upon the issue. In a particular simple stochastic model of hydrodynamics, 
so-called symmetric simple exclusion dynamics, Kipnis, Olla and Varadhan 
(KOV) have obtained an exact asymptotic formula for the probability of 
hydrodynamic histories which differ by an arbitrarily large amount from 
the (overwhelmingly) most probable history calculated from the hydro- 
dynamic equation (12> (see also ref. 13). The result is a rigorous one 
obtained by the probabilistic method of large deviations from the 
hydrodynamic scaling limit for the microscopic model. In the latter 
approach, the hydrodynamic equation is derived in a limit as a separation 
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of scales parameter goes to zero. It was observed subsequently by Spohn 
that the result of KOV has a simple thermodynamic interpretation: the 
probability of a large fluctuation is given by the exponent of minus the 
dissipation required to produce the fluctuation. ~14) This recalls the result 
in Eq. (2) of Onsager and Machlup. In fact, the theorem of KOV fully 
confirms the nonlinear Onsager-Machlup theory of Graham for their par- 
ticular model and, furthermore, provides it a fundamental microscopic 
basis. Because the models to which the argument of KOV applies seem to 
have quite typical statistical mechanical behavior in other respects, the 
result strongly suggests the validity of the theory for real physical systems 
encountered in the laboratory. 

We give in outline the plan of this paper. In Section 2, the standard 
Einstein theory of static equilibrium fluctuations is shown to have a 
rigorous mathematical basis in the existence of the thermodynamic limit of 
equilibrium partition functions. This example serves as a prototype of a 
large-deviations theory. We believe that the language and basic concepts of 
large deviations should be more widely known by statistical physicists, as 
they naturally apply in many situations. In Section 3, the rigorous result of 
Kipnis, Olla, and Varadhan is reviewed. The notion of a hydrodynamic 
scaling limit and the stochastic lattice gas models which are the subject of 
the theorem are both briefly introduced. Then, a precise mathematical 
statement, without proof, is given of the theorem of KOV. In Section 4, the 
final result of KOV is formally generalized as a fluctuation-dissipation 
hypothesis to a general hydrodynamic situation, including the non- 
equilibrium steady state. It is shown that this hypothesis leads to the 
nonlinear hydrodynamic fluctuation theory of Onsager-Machlup~Graham, 
which is briefly reviewed. A particular consequence discussed is a dynami- 
cal variational principle for the most probable hydrodynamic history sub- 
ject to arbitrarily large constraints (a nonlinear version of Onsager's 
principle of least dissipation.) In Section 5, a general principle of large- 
deviations theory, the contraction principle, is introduced and formally 
applied to yield a generalized potential, analogous to an equilibrium free 
energy, for the nonequilibrium steady state. Under certain assumptions of 
time-reversal invariance, the generalized potential is explicitly calculated. 
Associated to the potential is a variational principle, which is a static 
version of Onsager's principle of least dissipation. In the final Section 6, 
our theory is compared with a more traditional theory of nonlinear 
hydrodynamic fluctuations based on stochastic differential equations h la 
Landau-Lifshitz. The large-deviations approach is shown to avoid the 
difficulties of a nonlinear version of the latter which were pointed out by 
van Saarloos et aL ~H~ and by van Kampen. ~~ It is argued that the non- 
linear hydrodynamic fluctuation theory, in contrast to the linear case, must 
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explicitly contain a small parameter (here, the ratio of scales) for a precise 
interpretation which is free of paradoxes. Such a formulation is proposed 
in which the white noise enters multiplicatively so as to reproduce the 
conjectured large-deviations theory on a formal analogy with the results of 
Freidlin and Wentzell ('5'~6~ for finite-dimensional systems. 

2. E I N S T E I N - B O L T Z M A N N  F L U C T U A T I O N  T H E O R Y  A N D  
LARGE D E V I A T I O N S  

It was not until the rigorous proofs of the existence of the ther- 
modynamic limit were given in the 1960s (17'18) that the Einstein fluctuation 
formulas such as Eq. (1) were given a sound mathematical basis. The 
connection between the thermodynamic limit and fluctuation theory is 
described lucidly and at length in the work of Martin-L6f. (19) Here we shall 
be brief. 

Let O'3(E, N, A) denote the partition function of the microcanonical 
distribution on the energy shell of width A about the mean value E for N 
particles in the spatial domain A, i.e., 

ap @ {. 

f2~(E, N, A ) =  j (10) 
N! 

q~AN,  E ~ H ( q , p ) ~ E + A  

If the entropy at finite volume S3(E, N, A), is defined as 

S~(E, N, A)= kB log O~(E, N, A) (11) 

then the proof of the thermodynamic limit provides the existence, with 
e= E/IA[ and n= N/IAI, of 

1 
Jlljim~ IAl~ Sa(E, N, A) = s~(e, n) (12) 

that is, the thermodynamic entropy per unit volume. Now, consider any 
"macroscopic variable" U. To be more precise, let U be an "m-body 
variable" of the form 

U(x) = ~ u(xil,..., xi m) (13) 
{il,-.., in,} = { 1,..., N}  

with x i = (qi, Pi), x = (q, p), and u(xl,..., Xm) a symmetric function of its m 
variables, translation invariant, i.e., 

u(ql -J-fl, Pl ;..., qm + a, Pro)= U(ql, Pl ,'"; qm, Pro) 
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and, for simplicity, finite range [so that u(xl ,..., x~) = 0 if Iqe-  qj} >I R for 
any i, j ] .  Then, for any "nice" set A ~ R, 

1 f dx (14) 
N~ 

q~A;V,E<~H(x)<~E+A,U/IAI~A 

gives the probability that U/IAI cA for the microcanonical distribution. 
The same argument applied to establish the limit in Eq. (12) gives here the 
result that 

1 ( U  ) sj(A[e,n)-s~(e,n) 
IAblim~o~ ~'~[ IOg P A' E'N'A -~  cA = k B (15) 

The quantity s~(Ale, n) is often referred to in the physics literature as a 
"conditional entropy," i.e., it is the thermodynamic entropy subject to the 
condition u c A (see ref. 5, Chapter 6). In fact, 

s~(Ale, n ) = s u p  s~(ule, n) (16) 
U E A  

where s3(u I e, n) = infA ~ u s3(A I e, n) is an extended entropy function, con- 
cave and upper semicontinuous as a function of u. It is clear from the way 
it was defined that As3(A ] e, n)= s~(A I e, n ) -  s~(e, n)<~ O. This inequality 
also corresponds to the fact that the entropy is maximum for equilibrium 
and decreases subject to any constraint such as u c A. We may now employ 
a short-hand notation for the limit statement in Eq. (15): 

,~.U.~ kB n)j ] (17) 

Thus, we have established a familiar form of the Einstein fluctuation 
formula/5) Other versions of the formula, e.g., with the entropy difference 
replaced by a negative free energy difference, are derived in the same 
manner starting from an appropriate canonical distribution. ~t% 

The above example is, in fact, the prototype of a situation that occurs 
sufficiently often in probability theory that its basic features have been 
abstracted (ref. 20, Section 3). Let ~ be a complete separable metric space 
(or Polish space), ,~(f) the Borel a-field of f ,  and {P~ In - -1 ,  2,...} a 
sequence of probability measures on M(f). We say that {P,} has a large- 
deviations property if there exists a sequence of positive numbers 
{a, I n = 1, 2,...} which tend to ~ and a function I from 5f into [0, o5] 
such that the following hold: 

1. l(x) is lower semicontinuous. 
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2. I(x) has compact level sets. 

3. lira sup, ~ ~ a~ -l log Pn{K} <~ - i n f x ~  I(x) for each closed K in X. 

4. lira inf n ~ ~ a~ -I log Pn{G} >>- -infx~G I(x) for each open G in X. 

I(x) is called a rate function of {Pn}. In the statistical mechanical 
example above, I(u) = -k~l(s~(u I e, n)-s~(e,  n)). The book of Ellis (21) 
develops large-deviations theory in detail and elaborates its many relations 
to equilibrium statistical mechanics. Here we shall simply make a few brief 
remarks. First, the rate function is unique. As direct consequences of the 
assumed properties 1~4 above, it follows that I(x) attains its infimum over 
any nonempty closed subset of X and that the infimum over X itself is 
zero. A point of X where I vanishes is called a minimum point. If K is any 
closed subset of X not containing a minimum point, then there exists a 
number I o > 0  such that Pn{K}<~e -a"t~ for sufficiently large n. In par- 
ticular, if there is a unique minimum point Xo, then the X-valued random 
variables Xn on X with distributions Pn converge in probability to the 
deterministic limit Xo at an exponential rate as n ~ oe. That is, the 
large-deviations property implies an exponential form of the law of large 
numbers. Finally, we remark that there is a large class of sets for which 
equality holds in properties 3-4 above. Call a Borel subset A of X an 
/-continuity set if 

inf I ( x ) =  inf I(x) (18) 
x e c l  A x ~ i n t  A 

If A is an/ -cont inui ty  set, then l i m ~  ~ a n 1 log Pn{A} = -infx~A I(x). 

3. LARGE D E V I A T I O N S  FROM THE H Y D R O D Y N A M I C  L IMIT  

The hydrodynamic description of a fluid represents a vast simplifica- 
tion of the detailed microscopic picture of motion of the order of 10 23 

molecules described by Newton's laws. In the reduced hydrodynamic pic- 
ture, only the few locally conserved variables are retained. It is a common 
wisdom that this reduction is possible because of the presence of two 
well-separated characteristic length scales in the fluid: one, denoted by l, is 
the mean free path of a molecule, while the other is the length scale L over 
which the hydrodynamic variables vary (see, e.g., ref. 22; however, the idea 
is quite old, appearing, for instance, in the Hilbert or Chapman Enskog 
solutions of the Boltzmann equation). For  a typical fluid, the ratio 
e = l / L ~ l O  -5 or smaller. For  simple stochastic lattice gas models of 
hydrodynamic behavior, the above idea may be formalized in terms of a 
hydrodynamic scaling limit. (23) In such a context, hydrodynamic equations 
describe the evolution of the conserved quantities with probability 

822/61/3-4-3 



540 Eyink 

approaching unity (law of large numbers) in the idealized limit as e--* 0. 
We shall here first introduce a simple class of lattice gas models and then 
describe in precise terms the hydrodynamic scaling limit for these models. 
For more details see refs. 14, 23 and 24. 

The models we consider live on a discrete lattice. Anticipating the 
hydrodynamic scaling, we take as our lattice a subset of the hypercubic lat- 
tice eZ a with lattice spacing ~, consisting of all the lattice sites in the 
"macroscopic region" A, i.e., A~=-eZanA. Here, A is a simply-connected 
domain in R d with smooth boundary. Particles jump stochastically from 
site to site of this lattice subject to an exclusion condition of a single par- 
ticle per site. We shall restrict attention to the case where the particle may 
jump only to lattice sites a fixed distance R (in microscopic units ~) from 
its own position. Additionally, the hopping rate of a particle may depend 
on the occupancies of the neighboring sites within the finite range R of its 
position. Nondegeneracy is presumed, in that the exchange rate is strictly 
positive for a pair of occupied and unoccupied sites within a distance R. 
Note that in this dynamics, often referred to as a Kawasaki dynamics, par- 
ticles are neither created nor destroyed, and total particle number is the 
only conserved quantity. In more mathematical terms, a microscopic state 
of the model is given by a vector ~/e (2~ = {0, 1 }At, whose components give 
the occupation numbers of the lattice sites. A probability distribution # 
over the states evolves according to a "master equation": 

d 1 
d t# , ( r / )=  ~ ~ [c(x,y;qX'Y)#,(q~'Y)--c(x,y;tl)#,(tl)] (19) 

x, y e A ~  

In this equation, c(x, y; 11) is the probability rate per unit time for an 
exchange between lattice sites x and y when the lattice configuration is 
given by r/. By r/x'y we denote the configuration obtained from r/ by 
exchanging occupancies at sites x and y. The rate c(x, y; ~1) is subject to the 
conditions stated previously. Furthermore, we assume that the dynamics in 
the bulk of the domain A~ are translation invariant, i.e., 

c(x+a, y+a;%q)=c(x ,  y;~)  (20) 

when the distances of all of x, y, x + a, and y + a from c~A are greater than 
R. We have denoted by raq a translated configuration, rat/(x ) = q(x-a) .  
Also, we assume the rates satisfy a condition of detailed balance with 
respect to a translation-invariant, finite-range Hamiltonian H(t/), i.e., 

c(x, y; tl) e x p [ -  fill(t/)] = c(x, y; qx.y) exp[_flH(ttx, y)] (21) 

With this assumption, the unique invariant measure under the dynamics of 
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Eq. (19) for a fixed total number of particles N is the canonical Gibbs 
measure 

#eq(~]) = Zeq 1 exp[ --flH(t/)] 6Nt.),N (22) 

On a macroscopic scale, the locally conserved particle number density 
p(q, ~), as a function of macroscopic position q ~ A and macroscopic time 

>~ 0, is expected to obey a nonlinear diffusion equation 

O~p(q, "c) = ~ q ,  [D(p(q, "r)). ~3qp(q, "E)] (23) 

In this equation, the bulk diffusion matrix D(p) is expected to be given 
by a Green-Kubo formula as the time integral of an equilibrium 
current-current correlation function at the density p. In fact, for many 
cases these expectations may be confirmed in the following precise sense. 
To keep things simple, let us take A = [0, 1 ]a with periodic boundary con- 
ditions. As initial measure for the dynamics, consider a local equilibrium 
distribution 

#le(tl)=ZTel exp[-flH(~)+ ~ 2x~(x)l (24) 
xEA~ 

determined by a smooth chemical potential profile 2o(q) on the macro- 
scopic scale as 2 x =2o(eX ). Observe that the initial profile varies slowly 
(order e) on the microscopic scale, according to our earlier proposed 
requirement for hydrodynamic behavior. Now consider the empirical 
density field defined by 

x•(O) = ea Z ~(ex) rh-2~(x ) (25) 
xaA~ 

where t/l gives the configuration evolved to (microscopic) time t. The 
smearing with respect to the test function ~b is a smooth version of 
averaging over a macroscopic region A~=eZdc~A, since only for a 
"coarse-grained density" can the hydrodynamic equations be expected to 
hold. Notice also that, whereas for positions, x~ e-lq, for times, t ~e -z r .  
This corresponds to the fact that, for a purely diffusive system, effects 
propagate over a lattice distance ~e  1 on a time scale ~ 2 and also to 
the symmetry of the macroscopic equation under the scalings q ~ 2 q ,  

~ 22z. Let ~ l  denote the set of measurable functions from A into [0, 1] 
with the weak topology, considered as a space of density profiles. By 
D([0, T]; ~#~) denote the path space of histories of density profiles over the 
macroscopic time interval [0, T] and by P~ the probability measure on 
path space which is induced by the stochastic evolution of Eq. (19) with 
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initial measure as in Eq. (24). Then, the following has been proved for a 
class of models(24'14): 

T h e o r e m  1. (See refs. 14 and 24.) For each fixed ~be C~ ~ >1 0, 
and 6 > 0 ,  

limP~(X:((~)--fAq)(q)p(q,~)d q > c5) = 0 (26) 
e ~ 0  

where p(q, ~) is the (weak) solution of the macroscopic equation (23) with 
initial condition Po(q) and, for each q, Po(q) corresponds to 2o(q) by the 
bulk equilibrium relation p(2) between density and chemical potential. 

Thus, the hydrodynamic equation describes the evolution of the density in 
the sense of a law of large numbers as e ~ 0. It is also verified that D(p) 
is given by a Green-Kubo formula and therefore D(p)>~ 0. ~4~ 

At present the proofs of this theorem are subject to certain technical 
restrictions which largely confine the results to the one-dimensional case. 
We want to emphasize, however, that despite the simplicity and special 
nature of the models that can be treated, their equilibrium and non- 
equilibrium statistical mechanical behavior seem to fully conform to the 
predictions of conventional theory. This is already partially evidenced by 
the above result. In addition, the validity of (linear)fluctuating 
hydrodynamics (see ref. 26; also ref. 4, Part 2, Section 88, and ref. 5, 
Section 11.12) for time-dependent fluctuations of the density field about 
equilibrium has been established as a functional central limit theorem for 

~ 0. This result has been obtained in about the same generality as the 
law of large numbers. (24'14) There is also a theory of linear fluctuating 
hydrodynamics for the nonequilibrium steady state (see ref. 8 for a review) 
whose validity for one special case, the symmetric simple exclusion model, 
has been obtained as a central limit theorem by Spohn. ~27) The symmetric 
simple exclusion model is, perhaps, the simplest model of our type and 
corresponds to the choice 

c(x, y; r/) = [q(x) - q ( y ) ] 2  (27) 

These rates satisfy the detailed balance condition (21) with flHOl)= 0, i.e., 
this dynamics corresponds to an infinite-temperature situation. In this 
model, the only interaction between distinct particles is via the exclusion 
condition. Nevertheless, the model already exhibits quite complex and 
realistic behavior. In the cited paper, Spohn studied the simple exclusion 
dynamics in a finite slab when coupled at its opposite ends to particle 
concentration reservoirs, modeled stochastically by particle creation- 
annihilation rates obeying detailed balance with respect to two different 
chemical potentials. In the unique steady state for this situation, a density 
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gradient is set up across the slab and a particle number current flows from 
the reservoir of higher chemical potential into the lower. In particular, 
Spohn verified the predictions of linear fluctuating hydrodynamics for the 
steady-state density-fluctuation covariance, including the interesting feature 
of a long-ranged part with a power-law decay. In real fluids subject to a 
temperature gradient such long-range decay is also predicted and observed 
in tight-scattering experiments (see references in ref. 8). 

Besides the purely diffusive models, we want to mention briefly some 
other types of models where similar results are established. For one- 
dimensional asymmetric simple exclusion the Burgers equation is derived 
in an "Euler limit" where x ~ ~-~q and t ~ e- l r .  (23) For stochastic versions 
of the HPP and FHP models (22) the actual Euler equations have been 
derived in the same scaling and also the incompressible Navier-Stokes 
equations have been derived. (28) The incompressible Navier-Stokes equa- 
tions are not invariant under any nontrivial space-time scaling; however, 
they are invariant under a transformation in which velocities are also 
rescaled: q ~ 2-iq,  t ~ 2-28, U ~ 2U. A corresponding scaling is employed 
in the cited derivation. The basic difficulty with the Navier-Stokes equa- 
tions is the presence of several distinct time scales: the microscopic time 
scale e ~ on which relaxation to local equilibrium occurs, the "Euler" time 
scale e-1 on which density effects propagate as sound waves, and the 
"Navier-Stokes" time scale e-2 on which diffusive propagation occurs. It 
remains an important problem to characterize precisely the Navier-Stokes 
correction to the Euler limit and to specify in what regime and in what 
sense the system is better described by these equations. In any case, despite 
all the stated limitations, we wish to emphasize again that these simple 
models, although extreme caricatures of actual physical fluids, nevertheless 
exhibit quite realistic hydrodynamic behavior. 

We are now prepared to discuss the deep and beautiful work of 
Kipnis, Olla, and Varadhan (KOV) on the large deviations from the 
hydrodynamic limit for the symmetric simple exclusion model. (12) It is not 
our intention here to explain in detail the methods of their proof, for which 
we refer the reader to the original paper and to an illuminating, heuristic 
discussion of Spohn (ref. 14, Part II, Chapter 3.7), but only to expose the 
results and explain their physical significance. The model considered by 
KOV was the symmetric simple exclusion dynamics of Eq. (27) on the 
macroscopic domain A = E0, 1 ] with periodic boundary conditions, i.e., on 
the unit circle $1. Therefore, for fixed e = 1/N, the microscopic model was 

1 - -  defined on S N -  {i/N] i =  1 ..... N}. For this model, Theorem 1 holds with 
the macroscopic equation 

Or z) = Aqp(q, r) (28) 
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i.e., Eq. (23) with D(p)= 1. Let P~ denote the measure on the path space 
D([0, T], ~'~) induced by taking the (grand canonical) Gibbs measure 
with chemical potential 2(~) (here, a Bernoulli measure with constant 
density a) as initial measure for the stochastic dynamics. For simplicity, 
we have chosen the case where the initial density is uniform and P~ 
corresponds to a stationary stochastic process. To state the results of KOV, 
we need to make certain definitions and introduce some notation. We shall 
employ the following short-hand: 

<p,(~)=fs p(q)(~(q)d q, pmJg~, (J~C(S ~ ) (29) 

As before, given any path for the microscopic dynamics, 
{~/t ] t e [0, e-2T] } e D([0, e 2TI; ~ ) ,  the empirical density is defined by 

p~(q, z)=q~ 2r (30) 

where Ix]  denotes the integer part of x. Thus, p~eD(FO, T];Jgl). 
We define also a Hilbert space Hi(a) for each a e D ( [ 0 ,  T ] , ~ )  where 
J# is the space of bounded measurable functions on A into R, as 
follows: consider in C2'x(S 1, [0, T]) the equivalence relation U ~  U' if 
U(q, ~)- U'(q, ~) is a function only of ~. On the equivalence classes C2'~/~ 
define the inner product 

(u, u ' )= (a,,,~u.t~u,(.,z))dz (31) 

and HI(a)  as the completion of C2"1/~ with respect to this scalar product. 
We alert the reader that the elements of H 1 shall have the physical 
significance of "external potentials." For each p E D([0, T], ~1) define the 
linear functional on C2'~($1, [0, T]): 

1 1 
l(p; U)=~ (Po, U(., 0 ) ) -~  (PT, U(', T)) 

1 ( '  T 
+ ~ |  dz (pr (8r U(.,z)) (32) 

Z J0 

Then introduce the following rate functionals, for Po ~ ~1,  

AEpo]= sup [ ( p o , ~ o ) + ( 1 - p o , ~ )  
4~o,r ~ c ( s  I ) 

- (1, log(~e~~ (1 - ~ )  e ~ ) ) ]  (33) 
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and, for p ~ D([0, T], Jgj), 

ID[p] = sup l(p; U)--~ f ~ dr {a(p(., z)), (OqU(., r))2) 
g~c2,1 

(34) 

where a ( p ) =  p ( 1 -  p). Finally, let 

I~[p] = f~(Po) + ID(p) 

Then Kipnis, Olla, and Varadhan establish the following theorem: 

(35) 

T h e o r e m  2.  (12) The measure P~ has the large-deviations property 
as e--+0 with rate functional I~[p]. In particular, for any /a-continuous 
Borel subset A c D ( [ 0 ,  T], J//1) 

lim e log P~(p~ e A ) = - inf I~[p ] 
e ~ O  p e A  

(36) 

In ref. 14 it is explained how this result extends also to the same class of 
models for which Theorem 1 was proved, with appropriate definitions of 
the basic quantities. We now explain in detail the physical significance 
of this result. 

The rate function which appears in the above theorem has two parts, 
a "static" contribution f~[Po] which involves only the time-zero profile Po 
and the "dynamic" part ID[p]. It is not difficult to show that, if f~(p) < oo, 
then 

1 - P o )  
f~[Po]=tpo, l ~  l ~  ) (37) 

Furthermore, it is a simple computation that the conditional free energy, in 
the state with chemical potential 2(c~), to have a density p, i.e., 

f(p l 2(c~)) = - s ( p ) -  2(cOp + ~(~) (38) 

[ ~u(cr normalizes f to zero for p = ~] is here given by 

f(p ] 2(a)) = p log -p + (1 - p) log 1 - p 
1--~ 

(39) 

Thus, 

f~[Po] = fs 1 f(Po(q) I 2(~)) dq (40) 
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This is another familiar form of the Einstein fluctuation formula, for the 
hydrodynamic situation (e.g., see ref. 11 ). This result is not at all surprising, 
since it just states that, to observe a profile p, there is a cost in free 
energy to observe the initial fluctuation Po at time zero. Let us note that 
establishment of this form of the Einstein formula for static hydrodynamic 
fluctuations from equilibrium presents no great problem, even for rather 
realistic models, since it requires only good control over partition functions 
of local equilibrium distributions as e ~ 0 (for which, see ref. 29). 

The real contribution of KOV lies in their calculation of the 
"dynamic" part ID[p] of the rate function, which for realistic systems lies 
far beyond our present mathematical abilities. To understand its 
significance, however, let us cite Lemma 5.1 of KOV. 

L e m m a  1. (12) If lD[p] < 0% there exists a U~HI(~(p)) such that 

l f: ID[p] =-~ dz <~(p=), (OqU(-, 3))2) (41) 

and that p satisfies in the weak sense the equation 

O~p(q, r) = Oq[~r(p(q, z)) Oq U(q, z) + C) qp(q, z)] (42) 

Now, by the Einstein relation a=)~D, o-(p)= p ( 1 - p )  is the conductivity 
for the model. Therefore, Eq. (42) gives the evolution of the density in the 
presence of an external field F(q, 3) arising from a potential U(q, 3): 

F(q, 3) = -Oq U(q, 3) (43) 

In fact, the basic strategy of the proof of KOV is to modify the symmetric 
simple exclusion dynamics by "turning on" a slowly varying external poten- 
tial so that a given profile p becomes typical for the new dynamics. The 
change in the path measure for the new dynamics can be explicitly 
evaluated (by the Girsanov formula) and is given asymptotically by 
e x p ( - e - l i D [ p ]  ) as e--* 0. The above lemma establishes that for any given 
p there is a (unique up to ~ )  U=  U[p] for which Eq. (42) is satisfied. In 
the general case discussed by Spohn (14) the corresponding lemma states 
that there is a U such that (in the weak sense) 

#~p (q, 3) = C3q[~r(p(q, "c)) ~q U(q, 3) + D(p(q, 3)) Oqp(q, 3)] (44) 

is satisfied. Now, Spohn has also made the following important observa- 
tion: the dynamic part ID[p] of the rate function, as it appears in Eq. (41) 
of the above lemma, is just one-half of the time integral of the dissipation 
by the external field required to produce the fluctuation p (Ohm's law). 
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Thus, just as for static fluctuations, the probability may be calculated from 
thermodynamic considerations. The simplicity of the final result strongly 
suggests a more general principle. That is what we explore in the following 
section. 

4. A F L U C T U A T I O N - D I S S I P A T I O N  H Y P O T H E S I S  A N D  
THE N O N L I N E A R  F L U C T U A T I O N  T H E O R Y  OF 
O N S A G  E R - M A C H  LU P-G R A H A M  

We now wish to formulate a general conjecture, based on the results 
of Kipnis, Olla, and Varadhan exposed in the previous section. Our 
starting point is a set of hydrodynamic balance equations written in 
Onsager form (8,9): 

0#  ~ 'R -a,~,(p) + a,(L,,Ap) x>(p)) (45) 

To economize on space, we employ a compact notation. Roman indices 
range over spatial directions 1, 2 ..... d, Greek indices range over conserved 
quantities 1, 2,..., A, and repeated indices are summed over. We consider 
these equations, as above, in a simply-connected domain A ~ R  d with 
smooth boundary •A. The p~, # =  1,..., A are the conserved (hydro- 

"R dynamic) variables. The yi~ are certain functionals of the p s, referred to as 
the reversible currents. Xjv(p) is a thermodynamic force defined as 

Xj~(p) = 0j2v(p) (46) 

where 2v(p) are the conjugate thermodynamic variables: 

6S 
2v(p; q ) -  (47) ap~(q) 

with S the entropy 

SEp] = f A dq s(p(q)) (48) 

Here, s(p) is given by the bulk thermodynamic relation. L~,.j,.(p) is the 
�9 D and the thermo- Onsager coefficient relating the irreversible current Ji~ 

dynamic force Xj~: 

j~(p) = -Li.,+~(p) Xjv(p) (49) 

The total current is then a sum 

Ji~(P) = J~(P) +j~(P) (50) 
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If the densities p~ have the parities e~ under time-reversal T, 

T: p~--+~=s~p~ (51) 

then we assume transformation properties 

S [ # ]  = S[p] (52) 

L,,,jv[fi] = e~e~Ly~,,,Ep] (53) 

The latter is the Onsager-Casimir reciprocal relation, which, for example, 
would follow as a consequence of a Green-Kubo formula for the Onsager 
coefficient. Likewise, we assume that the matrix of Onsager coefficients, for 
each p, is positive definite, as would also follow from a Green-Kubo 
representation. It is often convenient to introduce a (density-dependent) 
diffusion operator 

(A~v(p)f~)(q) = Oi(Li~,jv(p) 9;f~)(q) (54) 

In terms of this operator, the hydrodynamic equations may be written as 

~, = --O~j~(p) + .~v(P) )~v(P) ( 5 5 )  

From its definition, A~v is clearly negative definite. 
We now introduce driven hydrodynamic equations in the form 

P~ = -~iJ~(P) + 0~ [Li~,jv(p)(Fj~ + Xj~(p))] (56) 

where Fjv are the external driving forces. We shall often make the assump- 
tion that these driving forces are given by external potentials U~ as 

Fj~=OjUv (57) 

which allows us to write Eq. (56) instead as 

.R h~ = -a,j,~(p) + ,v(p)(Uv + 2,(p)) (58) 

The boundary conditions we shall impose on the equations (45) or 
(55) shall generally be of the form 

~5S aA 6pT--(q ) = 20(q) (59) 

with 2 o a specified smooth function on 0A. The equilibrium cases 
~0 constants, and the nonequilibrium situation to general correspond to ~ 

boundary data. 
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The framework above is sufficiently general to incorporate almost 
every hydrodynamic situation of interest. Let us consider a few examples. 

Examples 

1. Purely Diffusive Systems. An A-component, purely diffusive 
system is governed by the nonlinear diffusion equation 

P. = 8e EDuv(p) 8~pv(q)] (60) 

This may be written in the form of (1) with j R =  0, L~,,j~ = 6oL~v, 

and 

i.e., 

Likewise, the driven case 

L.~(p )  = D~(p)  Z~.,(P) (61) 

g~v(p)=Op~(Z)/82v (62) 

p~, = a~ [L~(p )  a ,L , (q ) ]  (63) 

/~ = c~ i [Du,,(p) cgip~(q) - L~,v(p) Fir] 

corresponds to Eq. (56), with jR, Li,,jv as above, and 

Fiv= --63iU v 

(64) 

(65) 

2. S i m p l e  Fluid.  The hydrodynamic equations of a simple fluid in 
Onsager form may be taken from the review of Schmitz. (8) We have A = 5 
with 

(66) (P0, P l ,  P2, /)3, /94) = (P, /'el, TO2, 7"C3, 8) 

where p is the mass density, ~z is the 3-vector momentum density, and e is 
the energy density. The conjugate thermodynamic variables are related to 
the temperature T, chemical potential/~, and local velocity v by 

20 /g--/22/2 2i vi 1 (67) ---V--' - p  

The hydrodynamic equations in the Onsager form of Eq. (45) are specified 
by the reversible currents: 

"R 
Ji~ = v , (p~ -F pc~4~,) -I- P(~iu (68) 
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with p the (scalar) pressure, and by the Onsager coefficients given as 

Lio, j~ = 0 (69) 

Lu,,jr tlT(~Sij~kl q- ait(~kj ) q- (~ --  ~tl) Ta,kazj  (70) 

Lik, j4 = nT(v, fkj  + Vk6 U) + (r -- ~l) T(~ikVj (71) 
+1 Zi4 , j  4 = ( x T q -  r/v 2) Z(~ij q- (~ 5tl) Tv~vj (72) 

subject to the symmetry condition 

L~,j~ = Lj~,,= (73) 

The quantities appearing in these equations are the transport coefficients: 
the shear viscosity t/, the bulk viscosity ~, and the thermal conductivity ~c. 
In this situation, driving forces are usually introduced in the form of an 
"external" or "background" stress tensor ~ and heat current q via 

"r 0 = L ij, kf~ f kfl (74) 

--qi-1- "Cij v j  = Li4,kBFk~ (75) 

In this form, the driven equations take the form 

p= - a . r t  

/ t=  - 0 .  [vTt + p l  + x ' ]  

i =  - ~ .  [v(~+ p ) +  v-~' + q ' j  

(76) 

(77) 

(78) 

with 

~ = -~ (a j v i  + O & ) -  ( ~ -  ~ )  &je .  v + T o (79) 

and 

q;= - ~ o i r + q ~  (80) 

Equivalently,, the driving forces may be introduced via Fi~ = 0i U. and the 
"external potentials" given as 

U 0 -- --1~R2, U i -.~ ~u i ,  U 4 = - ~  (81) 

in terms of "background" temperature lift and velocity u. The latter are 
related to the "background" stress tensor and heat current via 

rij = -~ (a iu j  + Ojui) - (~ - ~ )  a.  u,5,j (82) 
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and 

qi= -K~i( l/fl ) (83) 

In the above general hydrodynamic context we would like to for- 
mulate, as a conjecture, a generalization of the result of KOV. Of course, 
even to formulate a mathematically precise conjecture at this point is out 
of the question: on many points we must be very informal and inexact. Our 
starting point is a microscopic model, deterministic or stochastic, whose 
behavior on the macroscopic scale is determined by hydrodynamic laws of 
the sort discussed. We assume that the hydrodynamic laws may, in fact, 
be derived in the form of a hydrodynamic scaling limit as a separation- 
of-scales parameter ~ tends to zero. For  realistic equations, such as full 
Navier-Stokes equation of a simple fluid, this presumes a proper formula- 
tion of the multitime-scale limit, for which the following considerations 
might need to be modified. We assume, in any case, that the model 
provides us with a probability measure P~ on the set of space-time 
hydrodynamic fields which is indexed by the ratio-of-scales parameter e. 
(For a deterministic model, probability enters--only--f rom ignorance of 
the initial conditions.) 

Now we first assume the analogue of Lemma 5.1 of KOV: namely, 
that for any p in a suitable class, there exists a unique U such that the 
driven hydrodynamic equations (56) hold with that p and U. Let us denote 
this U~ by U,[p] and the corresponding force Fi~ = 0iU~ by Fi~[p]. Since 
p should always remain in the class satisfying the b.c. of (59), we may 
assume that 

U, IrA = 0  (84) 

We now form the functional 

l + 2  
l ip]  =~f  oo dv fA dq L'~'iv(P)F'u[P] Fir[P] (85) 

which has the physical interpretation of one-half the dissipation by the 
external forces F~u[p] required to produce the profile p. Observe that 
I[p] >~ 0 (possibly = + ~ ) .  In terms of the functional ! we can formulate 
the following conjecture. 

Conjecture 1. Fluctuation-Dissipation Hypothesis. The 
measure P~ has the large-deviations property with rate function I[p] in the 
hydrodynamic limit as e ~ 0. In particular, 

P"(peA)~exp( -e  a inf i[p]) (86) 
p e a  

for suitable sets A (e.g., /-continuous cylinder sets). 
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Note that the ~ above has the same interpretation as in Eq. (17). The 
conjecture appears in a somewhat different form than the theorem of KOV: 
in particular, the rate function appears to have only a "dynamic" part and 
not to have the "static" contribution seen there. However, we shall see in 
the sequel that the rate function proposed here is in fact identical to that 
of KOV in their context. The correct prefactor of the rate function in the 
exponent is ~ d in d dimensions, as may be seen from simple dimensional 
considerations (or comparison with the known static equilibrium result.) 
Our title for the conjecture, "Fluctuation-Dissipation Hypothesis," arises 
from the fact that the probability of a fluctuation is expressed directly in 
terms of the dissipation function. In fact, as we shall see shortly, the 
hypothesis gives a nonlinear generalization of the usual fluctuation-dissipa- 
tion relation. (We refer here to the fluctuation-dissipation relation of the 
second kind, so-called. The fluctuation-dissipation relation of the first kind 
is an identity between fluctuation correlation functions and the imaginary 
or dissipative part of linear response functions. It does not concern us 
here.) 

Let us consider whether the hypothesis is a reasonable one. In the first 
place, since the Onsager matrix is positive definite, I[p] = 0  only for 
vanishing external forces, i.e., when p satisfies the hydrodynamic equations 
(45). Thus, the hypothesis implies that the hydrodynamic equations are 
obeyed with probability approaching one (law of large numbers) as e-~ 0. 
Now consider the case of linear fluctuations about a solution ~(q, r) of the 
hydrodynamic equations. (14~ Write 

p(q, r) -= fi(q, z) + ed/2~(q, r) (87) 

and introduce "random fluxes" Ji~ by the relation 

Liu, j~(p(q, r)) Fj~(q, z )= ea/2ji~(q, r) (88) 

If we introduce these expressions into the driven hydrodynamic equations, 
we obtain to O(e~/2), 

4,(q, z) = -)~v [P; q, r]  ~(q, r) + ~? .j~(q, r) (89) 

where ~,~[r is the hydrodynamic operator obtained by linearizing 
Eq. (45) about the solution r From the Fluctuation-Dissipation 
Hypothesis we guess that the "random fluxes" have a Gaussian probability 
distribution 

r 1[ ~+~176 dr f dq(L-I 3 P[j]  ~exp L - 4 J  ~ JA )i#,jv (fi(q, r))Ji~(q, r)jj~(q, r ) j  

(90) 
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which implies in particular the covariance 

( j~(q,r) j j~(q ' , , ' ) )=2L~,j~(f i (q,r))b(q-q ')6(z-z ' )  (91) 

Thus we recover (formally) the usual assumptions of linear fluctuating 
hydrodynamics, including the standard fluctuation-dissipation relation (91) 
(i.e., for the nonequilibrium case, the so-called extended local equilibrium 
hypothesis(S)). This gives our hypothesis some plausibility. 

The connection we propose between the probability of fluctuations 
and the dissipation function strongly recalls the result of Onsager and 
Machlup discussed in the introduction. However, the dissipation function 
employed by OM was expressed, somewhat differently than ours above, as 
an "action functional." This analogy suggests we may be able to find here 
also an "Onsager-Machlup Lagrangian," a functional L[#,  p-1 of the state 
variables p and their first time derivatives, so that 

f 
+ c : c  

IEp] = dz L[tS, p] (92) 

In that case, the minimization of the functional I[p ] subject to appropriate 
constraints may be reduced to solving a set of Euler-Lagrange equations. 
In fact, the rate function in the present case may indeed be cast in such a 
form. For this purpose, we introduce the operator d;~(p), defined as the 
integral operator with the kernel G~v(p; q, q') satisfying 

A~(p ) G~(p; q, q') = 6 ~6( q - q') (93) 

with Dirichlet boundary conditions: 

G~(p; q, q') [q,u'~aA = 0  (94) 

Observe that 

lf+o~ 

i f  +~ 4 

l f+~  
4 _ ~  

1( "+~ 

t" 

dr JA dq L.,jv(p) eiUAp] ~jUvEp] 

d~ f. dq U. ~,EL,~,jv(p) ~jUv] 

d, f A dq Uu(A,~. U~.) 

d, f ~ dq (~,~A~ u~)(A~ u~) 

using U, r0A = 0 

(95) 
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o r  

1~ +~ 
l[P]= --4j_o dr fAdq fA 

Finally, using Eq. (56), i.e., 

gives 

Eyink 

dq' G,v(p; q, q )(AuxU).)(q)(A~U~)(q ) (96) 

3S 
(A.~. U~.)(q) = ~.(q) + OiJiR(p; q) + A.z(p) ~ [p] (97) 

with the "Onsager-Machlup Lagrangian" 

'L fA L[~, p] = - ~  dq dq' a,v(p;q,q') 

• t~.(q) + a;J,.(P, q) + A.~.(p) ~ [p] 

x{~v(q,)+ .R . ~s } 
~?jj/~(p, q') + ft~(p) 3p~(q,--~- ~ [p] (99) 

This is precisely the expression proposed by Graham in his 1978 Solvay 
Conference report. (9~ For that reason, we shall refer to the above expres- 
sion as the Onsager-Machlup-Graham Lagrangian. 

Observe that L[~,p]~>0 and L[tS, p ] = 0  if and only if the 
hydrodynamic equations hold for p: 

/5, = -~;Ji~(P) + A~v(P) )-~(P) (100) 

Thus, we see again from this representation that the absolute minimum 
I[p] = 0 is achieved only if the hydrodynamic equations are satisfied. In 
particular, tlie solutions of Eq. (100) are also solutions of the Euler- 
Lagrange equations 

dr 3p,(q) 

Notice, however, that the latter are second order in time. Therefore, there 
are solutions of the latter which are not solutions of the former. This is 
important in solving certain problems of minimization (e.g., analyzing the 

f 
+ o o  

I[p]= dr L[,6, p] (98) 
- - o o  
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growth of a spontaneous fluctuation). In general, to find the most probable 
hydrodynamic history subject to a sequence of constraints such as 
p(q, r l ) = p l ( q )  ..... p(q, "Cp)=pp(q), o n e  must solve a sequence of initial- 
final-value problems for the Euler-Lagrange equations (101) obtained from 
Eq. (99). This generalizes to the nonlinear domain Onsager's principle of 
least dissipation, which, in its original form, allowed the imposition of 
constraints only of O(e a/z) away from the expected evolution. 

5. GENERALIZED T H E R M O D Y N A M I C  POTENTIALS FOR THE 
STEADY STATE A N D  THE PRINCIPLE OF 
LEAST DISSIPATION 

In large-deviations theory, there is a general principle known as the 
contraction principle. Simply stated, it says that, given a certain system of 
random quantities indexed by n and having the large-deviations property 
with rate function I as n --, or, then the rate function for a reduced system 
of quantities, requiring less information, is obtained by minimizing the rate 
function I relative to the superfluous information. More formally, we have 
the following result. 

Theorem 3. Contract ion Pr inc ip le .  (3~ Let X and ~ be 
Polish spaces with the a-algebra of Borel sets and =: X --* ~ a continuous 
map of X onto ~J. Given a sequence of probability measures Pn on X 
which have the large-deviations property with rate function I as n --* o% 
then Qn = Pn ~ =-1 is a sequence of probability measures on ~ having the 
large-deviations property with rate function J given by 

J ( y ) =  inf I(x) (102) 
x E =  l ( y )  

This principle has many applications, e.g., to get the rate function for a 
random variable from the rate function for its probability distribution. 

Here, we discuss how the contraction principle may be applied 
heuristically in the hydrodynamic context to obtain the rate function 
K[po] for static fluctuations from the proposed rate function I[p] for 
dynamic fluctuations, as 

K[po]  = inf I[p] (103) 
p :p(q,  O) = PO(q) 

In fact, with such a constraint at time t = 0, we may clearly write 

0 

K[po] = inf f d~ L[~,  p]  
p : p ( q , O ) = p o ( q )  - - ~  

(104) 

822/61/3-4-4 
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since the future time integral is minimized by the solution of the 
hydrodynamic equation with initial condition Po(q) and gives zero con- 
tribution. (We may note in passing that this is a nonlinear generalization 
of the Onsager regression hypothesis: given that a fluctuation has occurred 
at time zero, the most probable future course is that the fluctuation will 
decay away according to the hydrodynamic law.) In the equilibrium case, 
the static rate function K[po] should be just the entropy or free energy, if 
our hypothesis is correct. For the nonequilibrium case, K[po] would be an 
analogue of the free energy, appearing in a fluctuation formula for the 
steady state: 

Q ~ ( p o e A ) ~ e x p ( - e  -a inf KIP0]) (105) 
p o e  A 

where Q~ is the measure on the static density fields induced by the station- 
ary measure for the microscopic dynamics. The quantity K[po] represents 
physically the (minimum) total dissipation by the external field, integrated 
over the past, to produce the fluctuation Po at time zero. Clearly, if Pss is 
any stationary solution of the hydrodynamic equations, then Kips,]  = O, 
which is the minimum value (even if Pss is a nonequilibrium state with non- 
zero entropy production.) For this reason, we should think of K[po] as the 
(total) excess dissipation by the external field required to produce Po, 
above any internal dissipation in the solutions Pss themselves. From this 
discussion it emerges that the stationary solutions of the hydrodynamic 
equations are, in fact, characterized by a variational principle, namely, a 
principle o f  least excess dissipation. This is a nonlinear, steady-state version 
(or a contraction to the steady state) of Onsager's principle of least dissipa- 
tion. (7'31'32) Unlike Prigogine's principle of minimum entropy production, (6) 
which is valid only in the linear regime close to global equilibrium, the 
present principle is valid arbitrarily far from equilibrium. Of course, it is 
not clear that the principle is a more useful characterization of the steady- 
state profiles than the stationary solution condition itself. 

In general, the only expression available for the excess dissipation 
function is that in Eq. (104), which involves an infinite-time integration and 
a minimization. However, Graham has found a set of conditions under 
which K may be evaluated exactly, which includes the equilibrium situation 
as a special case and yields there the appropriate free energy. ~ This 
supports the theory, at least in the equilibrium case. We shall now explain 
the conditions, following closely the exposition in ref. 9. Consider the case 
in which a generalized potential ~b[p] and a drift velocity v~(p; q) can be 
defined, so that the hydrodynamic equation may be rewritten as 

5~b (106) ~5~(q) = re(p; q) + fl~v(p ) 5pV(q) 
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such that 

and 

fA 60 dq vU(p; q) 6pU(q) =0 (107) 

6~ OA 
6p~(q) ' = 0 (108) 

Of course, v ~ and 0 are not independent: the requirement that the 
hydrodynamic equation take the form in Eq. (106) gives 

�9 R ~ 6 ( 0 + S )  (109) v~(p; q)= -~ .]~ - A ~  @---~ 

Note that the condition of Eq. (107) states that 0 [ P ]  is stationary under 
the evolution by v,. 

If such a 0 can be introduced, then it plays the role of a Lyapunov 
variable under the assumptions of a unique steady state and suitable 
regularity properties. Of course, the uniqueness assumption will not hold 
whenever the stationary solution bifurcates, as it does in many interesting 
cases: e.g., the Rayleigh-B6nard system at and above the threshold for 
convection. Even in that particular case, above the critical Rayleigh num- 
ber for convective instability, but beneath that for a secondary instability, 
there is still a single stable stationary solution (corresponding to convective 
rolls). We shall confine ourselves in all the following discussion to the case 
where there is a unique stable stationary solution Ps,, and later in the 
paper discuss the modifications required for the case of multiple stationary 
solutions with open domains of attraction. Now, we have 

6~ 
d o[P] = ;A dq tS u(q) 6p~(q ) 

=fAdq(A,,, 60 ~ 60 6p-;-(~/ using Eqs. (106), (107) 6pU(q) 

60 60 = - f A dq Li~,Jv(P ) #, ( ~ )  #j( ~p--~) 

~<0 (110) 

In the steady state, q~ obviously vanishes, i.e., achieves its maximum. By 
positive definiteness of the Onsager coefficients, we can conclude that 
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Together with the boundary condition (108), this yields 

6O 
- -  [ P s , ]  = 0  (112) 
6pU(q) 

Thus, Pus is an extremal of ~b. Let us assume good global convergence of 
arbitrary P0 to Pss under the hydrodynamic evolution for T ~ oo and also 
continuity of ~b[p]. If PT(q) is the solution with initial condition Po, then 

~b[ps~]= lim ~b[p~]~<~b[po] (113) 
-c ~ + o o  

using q~ ~< 0 for the latter. In this situation, therefore, Pss is an absolute min- 
imum of ~b. Without loss of generality, we may take ~b ~> 0 and the minimum 
of~b to be at 0, i.e., ~b[p,,] =0.  

We now go back to our examples. 

Examples 

1. Purely Diffusive Systems. Consider a purely diffusive system 
with arbitrary nonequilibrium boundary conditions: 

6S 0 6p,.(q)-  2.(q), qe~?A (114) 

In this case, we define 

~b[p] = - S [ p ]  - f A dq 2~(q) p,.(q) + ~ (115) 

with ~ a normalization constant so that ~b[pss ] = 0. Here 2,s is the steady- 
state profile of the conjugate chemical potentials, specified as the solution 
of 

c?. [Lu~(2,~(q)) ~72 .... (q)] = 0 (116) 

with boundary condition 

).ss,~,(q) = 2~ q E 0A (117) 

In this case, Eq. (109) yields 

v~,(p; q) = 0 (118) 
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so that Eq. (107) is satisfied trivially. Also, Eq. (108) is easily checked to 
hold. The condition ~b[p~s ] ~< ~b[p] is verified here without any assumption 
of global convergence to psi, so that ~b is a Lyapounov variable by our 
earlier argument. Notice that if Z ~ are strictly constant, then so are 2ss.u, 
and ~b is the standard thermodynamic potential. 

2. S imple  Fluid at  Equ i l ib r ium.  We impose here constant values 
only of the conjugate variables 2u = 2 ~ # = O, 1, 2, 3, 4 at the boundary. 
We then take as ~b the standard thermodynamic potential 

~bEp] - S[p ] o -- - 2~Nu[p] + 7 t (119) 

with 

N~Ep ] = In dq P u( q ) (120) 

It then follows ~om Eq. (66) that for this choice 

v~(p;q): -a.j# (121) 

It is again easy to verify by a simple calculation that Eq. (108) is satisfied 

6~b = 0  (122) 
6p"(q) aA 

Furthermore, it is also well known that 

6~b =0  (123) ~A dq v"(p; q) 6p~(q-~-- ~ 

for this case (e.g., see ref. 33; in fact, it is a direct consequence of the 
microscopic Liouville theorem). 

We now wish to show that, when such a "generalized potential" ~b can 
be introduced, it is, in fact, the static rate function K introduced earlier. 
However, we must assume the additional reversibility conditions: 

v~(#; q) = -Gv~(p; q) 

~[#l =O[pl 

It is easy to check that these hold in the examples above. 

Proposi t ion  1 .(9) K[po] - infp:p(q,O)=p0(q) IEp] = ~b[po]. 

(124) 

(125) 
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Formal Proof. 
Onsager-Machlup Lagrangian as 

1 
L[j6, p] =- --4 fA dq fA dq' G~,v(p; q, q') 

6q~ [p]}  • {~(q)  - ~(r q ) -  A~.(p) 

6~ [p]} • ~v(q') - ~v(p; q ' ) -  Aw(p) 

We may now express this, according to tradition, as 

L[~ ,  p ]  = 

where 

and 

Using the definitions of v. and ~b, we may rewrite the 

cl)(t~-v, p - v ) =  - ~  fa dq fAdq' Guv(p; q, q') 

x [ti.(q) - v.(p; q)] [-t~v(q') - Vv(p; q')] 

(6fb 6q~) _ I f  d q I ~ . ~ ( p ) ~ l  cSqJ 
gt ~P ' -~P _ 2 A 6 p ~ ( q ) 

(126) 

(127) 

(128) 

(129) 

identically, so that the Euler-Lagrange equations for L are equivalent to 
those for Le: 

\6~(q),] 6p~,(q~) = 0  (134) 

Lo[i), p] = ~ dq ~U(q) 5p~(q---- ~ 

It is easy to see that 

_d( 
dz \6tS~,(q)J 6p~(q) 0 (133) 

(132) 

6~ (13o) 

Notice, by our reversibility conditions, that L[~, P] may be decomposed 
into parts even and odd under time reversal: 

Le[#,p]= 5 q~(tS--v,~O--v)+ ~ ,~p (131) 
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Alternatively, note that Lo is a total time derivative, which makes no con- 
tribution to the action. We therefore see that under our assumptions, the 
Euler-Lagrange equations for L are time-reversal invariant. In particular, 
not only are the solutions of the hydrodynamic equations, 

60 
tS ~(q) = v~(p; q) + f~uv(P ) 6p-T(q) (135) 

solutions of the Euler-Lagrange equations, but also the solutions of the 
anti-hydrodynamic equations, 

tS~(q)=vu(p; q)-A~v(P) 60 (136) 
6p~(q) 

where " r  (A uvfu)(q) = Oi(Lj~,i~ O~ fv)(q), satisfy the Euler-Lagrange equations. 
We can easily see then that the unique minimizing profile--call it 

#--subject to the constraint p"(q, O) = Po(q) is the solution for r e [0, + oo) 
of the initial-value problem 

60 
~5.(q, v) = v~(p; q) + zi.~(p) 6P~(q, ~) 

p~(q, O) = Po~(q) 

and for T s ( - o% 0] of the final-value problem 

15~(q, r) = v~(p; q ) -  A•(p) 60 
6pV(q, z) 

p~(q, O) = po.(q) 

We note that l i m ~  +~ fi(q, z ) = p . ( q )  and recall that 0[P.~] =0.  Since 
- v - ~ T  - v - <A.v(p)(60/6p )[p] ,  (60/6p~)[/3]) = <A~(p)(60/6p )[p],  (60/6p~)[#] > 

and since also 

^ T  - - "  = <G.v(p)(pv- v j r ) ) ,  ~ - vu(#) ) 

= G~(p)flr,,~(fi)~p~[#], .~.(p)~p~.[/3] byEq.(136)  

60 60 [P]) = < A2~(P) Tp~ [P], Tp~ 

= - ~ , ~ .  [#] by Eq. (123), (137) 
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it follows that 

1~  E 
oO 

+ (A~'u(tS) Tp~ l-t5 ]' ~-fi;p~ 

fo f. 6r 
= - ~  dz dq ~ ( q )  ~ - ~  [fi] 

f0 d 
- - o o  

=~b[p0] QED 

This proposition was stated by Graham. ~ The basic idea of the proof goes 
back to Onsager and Machlup. (7) The proposition shows, incidentally, that 
the rate function proposed in our Fluctuation-Dissipation Hypothesis is 
identical to that of Kipnis, Olla, and Varadhan for their model. More 
generally, it is a consequence that the well-established equilibrium fluctua- 
tion theory of Einstein-Boltzmann follows from our hypothesis by contrac- 
tion to a single time. 

For the nonequilibrium steady state of purely diffusive models, the 
proposition implies that the "generalized potential" 

~b[p] = - S i p ]  - dq 2=s(q) p~,(q) + • (138) 

is the static rate function. It is important to observe that the static rate 
function for this case is the same as that for a local equilibrium distribution 
with the steady-state density profile (apparently not generally true accord- 
ing to the conjecture). In particular, if we consider linear fluctuations 
around the steady-state profile, 

P(q) = Pss(q) + 8d/2~(q) (139) 

then a quadratic approximation to ~b is 

f~ (~(q))2 (140) ~b(2)[~] = a d dq 2Z(p==(q)) 

This leads one to expect that ~(q) is distributed in the steady state as a 
Gaussian random field with covariance 

{ ~(q) ~(q') ) s= = Z(Pss(q) ) b(q - q') (141) 
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On the other hand, the stationary covariance given by fluctuating 
hydrodynamics is 

(~(q)~(q')) ,s=Z(pss(q))cS(q--q')+CNE(q,q ') (142) 

where CuE is a long-range part with power-law decay. (8'27) In fact, the 
latter covariance is proved to be the correct result in the hydrodynamic 
limit for the nonequilibrium steady state of the symmetric simple exclusion 
dynamics in contact with stochastic reservoirs. (27) This does not falsify our 
conjecture, but only implies that, if it is true, our expectation (141) is naive. 
Indeed, the results for e--* 0 that 

p ~ s ( p ~ A ) ~ e x p ( _  e d inf ~b[p]) (143) 
p e a  

and 

ed/2 e B  --* l~c(B ) (144) 

where #c is the Gaussian measure with covariance C as in Eq. (142), need 
not be in contradiction, as different quantities, p and ~, respectively, are 
held fixed in the limit. It is further plausible that the limit with p fixed will 
miss the long-range correlations, as these are O(e d) on the microscopic 
scale. It is rather remarkable that this apparent contradiction arises for the 
static rate function, which, after all, is calculable from our conjectured 
dynamic rate function that does give formally the same covariance for the 
random fluxes as in fluctuating hydrodynamics [cf. Eq. (91)]. Of course, 
even if the proposed static rate function is correct, the above observation 
shows that it contains less information about the static structure of the 
steady state than one might have hoped. In the following section we will 
adduce some further arguments in support of both the general conjecture 
and the static rate function resulting therefrom via contraction. 

6. N O N L I N E A R  L A N D A U - L I F S H I T Z  F L U C T U A T I N G  
H Y D R O D Y N A M I C S  

The large-deviations theory we have presented above provides a 
framework for the calculation of fluctuation probabilities which incor- 
porates consistently all of the hydrodynamic nonlinearities. However, other 
schemes have been proposed which may be, in fact, more familiar. In par- 
ticular, nonlinear stochastic differential equations (SDEs) obtained by 
introducing Gaussian white noise as random fluxes into the full nonlinear 
hydrodynamic equations have often been proposed to represent the com- 
bined effect of hydrodynamic nonlinearities and molecular fluctuations 
(e.g., ref. 25, Chapter XVII). This scheme generalizes to the nonlinear case 
the linear fluctuating hydrodynamics of Landau and Lifshitz. (26) Particular 
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applications are to study the influence of noise on the hydrodynamic 
instability at the critical Rayleigh number in a Rayleigh-Bbnard cell, (34) to 
provide the basis for mode-coupling calculations of equilibrium time- 
correlation functions, (~1) etc. In the present section, we review this 
approach to nonlinear hydrodynamic fluctuations, in particular to make 
comparison with the large-deviations method. 

A very careful and lucid discussion of the traditional nonlinear fluc- 
tuating hydrodynamics (for a simple fluid at equilibrium) is contained in 
the paper of van Saarloos et al. (H) For the case of the simple fluid discussed 
there, the basic equations have the same form as our Eqs. (76)-(80): 

= - d "  n (145) 

zt= - ~ .  [ v n + p l  +~ ' ]  (146) 

i =  - d  . [v(e + p) + v . r' + q'] (147) 

with 

and 
z~ = -r/(djv, + divj) - (~ - Dr/) bud" v + rg (148) 

q; = -~c ai T + q, (149) 

However, the assumption in the present context is that ~ and q are 
Gaussian generalized random fields with zero means and covariances 

, 2 b (r~j(q, r) zkz(q , r') ) = 2kB[L,(b~kajl + bi lbjk  - -  560- k[) ~- Lcb~tbkt] 

x b ( q - q ' ) b ( r - r ' )  (150) 

(r~(q,  ~) qk(q', r ' ) )  = 0 (151) 

and 
( qi(q, r) qj(q', r') ) = 2kBLqbijb(q - q') b(r - r') (152) 

The continuum equations above produce, in fact, divergences at short dis- 
tances and require, for a proper definition, a lattice or high-momentum 
cutoff. In the present case, the discretized SDEs are equivalently interpreted 
either in the sense of Ito or Stratonovich. (11) A chief result of the analysis 
of van Saarloos et al. is that the above stochastic differential equations have 
as their stationary distribution the Einstein distribution: 

Peq [-P'] ~ eS[oJ/kB (153 ) 

if and only if the following relations between transport and Onsager coef- 
ficients should hold: 

L~ L~ Lq 
= T(q, ~) '  ~ T(q, z ) '  ~c = T2(q ,~) (154) 
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Here, T(q, r) = T(p(q, z), re(q, r), e(q, r)) is the fluctuating temperature 
defined through the equilibrium relation T(p, re, ~) in terms of the basic 
density fields. Because the Onsager coefficients defined through the 
covariances are necessarily independent of the fluctuating variables, the 
relations in (154) imply an unreal dependence of the transport coefficients 
on the fluctuating temperature and density which is not seen in physical 
systems. (It is interesting to observe that these restrictive physical 
conditions are the same as those under which Prigogine's principle of 
minimum entropy production is valid, if the Onsager coefficients are 
assumed to be spacetime constants. See ref. 6, Chapter V.) The conclusion 
of van Saarloos et al. on this situation was: "This implies that the assump- 
tion of Gaussian white noise is, strictly speaking, not compatible with the 
physical phenomenological laws. The present scheme nevertheless is valid if 
the temperature fluctuations may be considered to be sufficiently small so 
that the dissipative currents (5.23) and (5.24) [our Eqs. (148)-(149)] can 
be linearized completely in the fluctuating fields." It is not clear from this 
statement whether nonlinear fluctuating hydrodynamics should be valid 
near an equilibrium critical point, for example, where fluctuations are 
divergent and yet where precisely mode-coupling calculations of dynamic 
critical phenomena are required. The theory is subject to a further criticism 
that the nonlinear hydrodynamic equations are not obeyed in an average 
sense, even though the random fluxes are taken to have zero mean. This 
point has been made in a general context for nonlinear stochastic processes 
in the book of van Kampen. ~~ Therefore, it is not clear how the deter- 
ministic law emerges in such a theory. Below we suggest a more precise 
statement of the sense of validity of nonlinear fluctuating hydrodynamics. 

We have already seen in the previous section that the problem exposed 
by van Saarloos et al. does not occur in the large-deviations approach, 
where the standard Einstein-Boltzmann static fluctuation theory is 
reproduced without any special, unrealistic assumptions on the transport 
coefficients. In fact, the formulation of nonlinear Onsager-Machlup theory 
as a large deviation from a hydrodynamic scaling limit suggests a certain 
reformulation of nonlinear fluctuating hydrodynamics from which, in fact, 
the proposed large-deviations result can be rederived. We explain this new 
point of view for the simpler case of an A-component, purely diffusive 
system: it is an easy exercise to work out the analogous SDE for the 
general hydrodynamic situation, but the situation is somewhat confused by 
the multiple-time-scale problem. We take as our stochastic hydrodynamic 
equation 

O~pu(q, ~) = (~q. EOt~v(p(q, "(,))" dqPv(q, Z')] -1- ( - -2Aq(p))~ ~bv(q, ~) (155) 
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where v~(q, ~) is a Gaussian white noise field with delta covariance: 

( ~ (q ,  r) ~v(q', r') ) = 6 ~ 6 ( q -  q') 6 ( r -  r') (156) 

and (--~lq(p)) 1/2 is the unique positive square root of the operator -.s 
introduced in Eq. (54). Thus, the fluctuation term is given as a space-time 
white-noise field transformed by a spatially nonlocal, integral operator, 
chosen, as we argue below, to yield the correct asymptotic probabilities. It 
is crucial to observe, however, that this fluctuation term may be rewritten 
as the divergence of a local current 

(--2Aq(p))]/~ 2 ~(q ,  r ) =  d "]~(p; q, r) (157) 

with 

],(p; q, r ) =  -L~,v(p(q, ~)) 8q fA dq' ( ( - 2 6 )  1/'2 (P~))v,~ (q, q') ~i~.(q', ~) 

(158) 

This is essential in order to preserve the local conservation laws of the 
hydrodynamic densities, which are even more inviolable principles of the 
stochastic hydrodynamic theory than the fluctuation formulas, since they 
are exact features of the microscopic dynamics. In the case where the 
Onsager coefficients depend only on the average densities, rather than the 
full fluctuating hydrodynamic densities, the noise term is easily seen to be 
stochastically equivalent to the traditional one, since one may identify 

- 1 / 2  �9 8 "j,(q, r ) =  (-2Aq(p))~v wv(q, ~) (159) 

as Gaussian processes with the same covariance Ewhere j is as in Eq. (91)] 
and, in that case, the equations are of the type considered by Bedeaux et al. 
However, in general, the proposed SDE differs essentially from that dis- 
cussed in ref. 11, since the operator acting on the noise term is a function 
of the fluctuating densities, i.e., the noise enters multiplicatively (1~ into the 
equations. It may be worth remarking that the choice of the noise term in 
our equation is just another expression of the fluctuation-dissipation rela- 
tion, since the operator coefficient of the fluctuation term is (the square 
root of) the analogue of the dissipative Onsager coefficient for the con- 
tinuous systems considered (see ref. 6, Chapter VI, Section 4). As before, 
the equation must be spatially discretized and is interpreted in the Ito 
sense. We leave a more careful mathematical treatment of the system to 
later work. 

As discussed previously, we consider the deterministic hydrodynamic 
equation as valid in the sense of a law of large numbers for a microscopic 
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particle system as the separation-of-scales parameter e--, 0. However, the 
stochastic equation (155) is no longer invariant under a diffusive rescaling 
q __, e-lq,  ~ ~ e-2r, but now a power of e appears in the white noise term: 

1/2 c3,p~(q, ~)= ~q. [Duv(p(q ' z)). r 3)] q-ed/2(--2Aq(p))uv #~(q, z) 

(160) 

Therefore, we suggest that the proper form of the nonlinear SDE is that in 
Eq. (160) containing explicitly the factor of e, whose solution should be 
interpreted in an asymptotic sense as e -+ 0. We observe that the e factor is 
in some sense just a book-keeping device, since it may be transformed away 
by a mere change of units back to microscopic length and time scales 
rather than lengths and times measured in units of macroscopic variations. 
However, since the e parameter is an actual, specifiable quantity (Knudsen 
number) in concrete situations and the regime of validity of the hydro- 
dynamic description is apparently one in which that parameter is small, it 
seems most illuminating to write the SDE in the form in which it explicitly 
appears. Since e--~ 10 -5 for realistic systems, asymptotic results for e--+ 0 
provide some justification for the application of the equations. Note, in 
particular, that the absolute magnitude of fluctuations might be large, e.g., 
near a critical point, and the theory still be applicable: it is only e which 
is required to be small. 

We now wish to describe the asymptotic results we expect to hold for 
Eq. (158) in the limit e --+ 0. We do so on the basis of analogy with a still 
simpler system of only finitely many degrees of freedom of the form 

k~ = b(X~) + e'/2a(X~,) ;v, (161) 

Here, the drift coefficients bi(x) and diffusion coefficients a~(x)=  
~k=lr aik(X) aJk(X), i, j =  1 ..... r, are assumed bounded functions on R r, 
uniformly continuous in x, and the diffusion matrix uniformly nondegene- 
rate: Z0 a~ cicj/> kz Z i  c 2, /~ > 0. The SDE is interpreted in the Ito sense 
and defines a family of strong Markov diffusion processes (X ~, P~) on 
R r when solved with the initial conditions X~o=xeR  ~. Intuitively, the 
diffusions result from the deterministic dynamical system on R ~ defined by 
vector field b(x) when subject to random perturbations with strength 
measured by e. The asymptotics of these diffusion processes have been 
studied in the limit as e-+ 0 in the work of Freidlin and Wentzell. (1516) 
[Some of the same results have been obtained formally by Graham and 
Tel (3s) by applying the method of steepest descent to the path integral 
solution of the Fokker-Planck equation corresponding to Eq. (161).] The 
statistical results obtained by Freidlin and Wentzell are of several sorts. 
First, they prove a law of large numbers (ref. 15, Theorem 2.1.2): if x,(x) is 
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the solution of the deterministic equation 2, = b(x,) with initial condition 
Xo = x, and the drift and diffusion coefficients satisfy some technical condi- 
tions, then 

lira P~( sup [X~-x,(x)] > 6 ) = 0  (162) 
e ~ O  t~ [0, T] 

Also obtained are results of the central limit theorem type (a special case 
of ref. 15, Theorem 2.2.2): if X~ 1) is the Gaussian process obtained as the 
solution of the linear stochastic equation 

2} 1)= b'(xt(x)) X}I)+ a(x,(x)) ~,, X(o ') (163) 

then under some assumptions on the coefficients it is shown that 

[- X t  - -  x t ( x )  l)  2 1/2 
sup [E~ X} = O(g  l/2) (164) 

t~  [0, T] L 

uniformly in the initial point x. 
However, most important for our purposes are the large-deviations 

theorems. The content of Theorem5.3.1 of ref. 15 is a dynamical 
large-deviations result. Let • =  C([0, T]; R') be the space of continuous 
functions on [0, T] into R', topologized with the uniform metric p(~b, ~ ) =  
sup,~ EO, r~ kb,-  ~,1, a(e)= e-1, and I[~b] be the functional defined by 

/[-~b] : ~ f :  .~ao((J,)(~:-b'((h))(~j-b'((h))dt (165) 

for absolutely continuous ~b and I[~b] = +oo otherwise. [Here, 
a0= (a-1)iJ.] Then, Freidlin and Wentzell show that P~ for e--+0 has the 
large-deviations property on s with the sequence a(e) and rate function 
I[~b], uniformly with respect to the initial point x. They also obtain static 
large-deviations results under conditions sufficient to guarantee the 
existence of a unique stationary measure #~ for the diffusion (ref. 15, 
Theorem6.4.3). Roughly speaking, the following is shown (for precise 
details see ref. 15): Suppose the deterministic dynamical system for the 
vector field b(x) has a finite number of stable attractors ~ ,  i =  1 ..... s 
(unstable attractors may be neglected entirely). For each i = 1 ..... s form the 
function 

= I ~ K,(x) inf dt L((), q3 ) (166) 
{}ECJi ,x ( (_oo ,O] , l l r  ) d oo 

Here, L(q~, ~b) is the same "Onsager-Machlup Lagrangian" as appears in 
Eq. (165) and CN,,x((-o o, 0], R r) is the class of continuous paths in R" 
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starting on s~,. at t = - o o  and ending at x at t = 0. Furthermore, introduce 
constants W(~.) for each i =  1,..., s, which can be defined in terms of the 
limits 

lim. e log ( ~  '~ o~o ',~ (4,~))= - ( w ( 4 ) -  w(~)) (167) 

with s~,e a 6-neighborhood of the attractor s~ for all 6 < 3o sufficiently 
small. Obviously the W ( ~ )  are only defined up to a common additive 
constant, which may be chosen so that mini W(s~)= 0. Then, form the 
function 

K(x) = l i m  (Ki(x) + W(~r (168) 
l <~i<.s  

The result of Freidlin and WentzeU is that the stationary measures #~ have 
the large-deviations property with sequence a ( e ) = e  -1 and rate function 
g(x) as e ~ O. 

By analogy to these results, we can infer the asymptotics for the non- 
linear stochastic hydrodynamic equation (160) above as e - , 0 .  For the 
comparison, we take i ~ (q, i) and e ~ e d. First, we should have a law of 
large numbers of the type of Eq. (162). Note that this answers the objection 
of van Kampen, since the hydrodynamic law enters as the most probable 
history of the system (this is similar to van Kampen's own resolution of the 
problem in terms of the "f2-expansion"(l~ We note as well that the 
hydrodynamic analogue of Eq. (163) is equivalent to the standard linear 
fluctuating hydrodynamic equation (89), because of the identification in 
Eq. (159), and we infer as a central limit theorem that the corresponding 
infinite-dimensional Ornstein-Uhlenbeck process should be the limit of 
(p~ - r "/2 for ~ ~ 0. 

Further, observe that the large-deviations theory we had previously 
proposed as a generalization of the result of KOV follows also formally for 
the nonlinear SDE (144) by analogy with the result of Freidlin and 
Wentzell, at least for the case where the deterministic hydrodynamic equa- 
tions have a single stable attractor [compare the Lagrangians in Eq. (99) 
and Eq. (165) and the static rate functions in Eq. (104) and Eq. (168)]. 
Although the framework of nonlinear fluctuating hydrodynamics is essen- 
tially phenomenological, the fact that our version leads formally to the 
same results as the conjecture provides the latter some theoretical support. 
Fluctuating hydrodynamics suggests also how that conjecture might have 
to be modified in the situations (e.g. turbulence) where there is more than 
one stable hydrodynamic attractor. We should say further that nonlinear 
fluctuating hydrodynamics also makes many more detailed asymptotic 
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predictions, e.g., higher-order corrections to the central limit theorem and 
asymptotic results for probability densities (local large-deviations results). 
It remains to be seen what, if any, of this finer information is accurate for 
the hydrodynamic limit of realistic particle systems. 

7. C O N C L U D I N G  D I S C U S S I O N  

The present paper has been speculative, pedagogical, and program- 
matic. Obviously, many outstanding problems remain to be answered. The 
problem of properly formulating the "multi-time-scale hydrodynamic 
scaling limit" has been emphasized by many other authors before. We think 
it also desirable to carry out a careful discussion of nonlinear fluctuating 
hydrodynamics, along the lines discussed in the last section, in order to 
have at least a consistent phenomenological framework. A most important 
problem for the proposals advanced in this paper is the proof of the 
large-deviations theory for the hydrodynamic limit of Spohn's model of 
a nonequilibrium steady state. (27) This is probably the simplest hydro- 
dynamic model in which long-range correlations appear. It is therefore the 
ideal model to test our conjecture for the static rate function and to resolve 
the issue of disagreement with the static covariance of linear fluctuation 
theory. 

We hope we have convinced the reader of the necessity of understand- 
ing the asymptotic significance of hydrodynamic laws in the limit as a 
separation-of-scales parameter e -.  0, in order to avoid paradoxes that arise 
in the naive approach. We imagine that the basic fluctuation-dissipation 
hypothesis we have proposed has a rather general validity, at least in all 
those cases of nonequilibrium thermodynamics where the system is locally 
in equilibrium. For systems which do not have that property, e.g., conduc- 
tors in applied electric fields, we imagine that a form of the hypothesis is 
still true, but the dissipation function can no longer be calculated from 
a local equilibrium assumption. The "nonequilibrium potential" here 
introduced should be useful in the study of critical properties at "non- 
equilibrium phase transitions." We have concentrated on steady-state 
problems, but the Onsager-Machlup approach should extend to other non- 
equilibrium situations (e.g., hydrodynamics with time-dependent boundary 
conditions.) In all these cases, the availability of a variational principle 
should be a powerful tool. 
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